Math 115
Spring 2017
Lecture 21

1) Simplify:
$$(-4 \chi^{5}y^{2})^{3} = (-4)^{3} (\chi^{5})^{3} (y^{2})^{3}$$

$$= [-64 \chi^{15}y^{6}] C = -64$$
2) Simplify: $(-2 \chi^{-4})^{-4} = (-2 y^{6})^{-2} = (\chi^{4})^{-2} = (\chi^{$

(4) Multiply
$$3x^{4} + 2y^{6}$$
 by its conjugate
$$(3x^{4} + 2y^{6})(3x^{4} - 2y^{6}) = (3x^{4})^{2} - (2y^{6}) = (7x^{8} - 4y^{12})^{2}$$
(5) Divide: $\frac{30x^{6} - 20x^{4} + 10x^{2}}{-10x^{2}} = \frac{30x^{6}}{-10x^{2}} - \frac{20x^{4}}{-10x^{2}} + \frac{10x^{2}}{-10x^{2}}$
(6) Divide: $\frac{3x^{2} + 17x - 7}{3x + 2}$

$$\frac{3x + 2}{3x^{2} + 17x - 7}$$

$$-(3x^{2} + 2x)$$

$$\frac{15x - 7}{-(15x + 10)}$$

$$\frac{15x - 7}{-17}$$

$$\frac{15x + 10}{-17}$$

$$\frac{3x^{4} + 2y^{6}}{-10x^{2}} = \frac{30x^{6} - 20x^{4}}{-10x^{2}} + \frac{10x^{2}}{-10x^{2}}$$

$$\frac{10x^{2}}{-10x^{2}} - \frac{20x^{4}}{-10x^{2}} + \frac{10x^{2}}{-10x^{2}} + \frac{10x^{2}}{-10x^{2}}$$

$$\frac{10x^{2}}{-10x^{2}} - \frac{20x^{4}}{-10x^{2}} + \frac{10x^{2}}{-10x^{2}} + \frac{10x^{2}}{-10x^{2}}$$

$$\frac{10x^{2}}{-10x^{2}} - \frac{20x^{4}}{-10x^{2}} + \frac{10x^{2}}{-10x^{2}} + \frac{10$$

(a) Simplify:
$$(-7 \chi^8) \cdot (5 \chi^3) = -35 \chi^8 \chi^3$$

(b) Simplify: $\frac{-28 \chi^7 y^{10}}{4 \chi^2 y^{15}} = \frac{-7 \chi^5}{y^5}$

(c) Simplify: $(1.25 \times 10^7) \cdot (4.8 \times 10^8)$
 $= 6 \times 10^{17 + (-28)} = 6 \times 10^{-11}$

(d) Simplify: $-13 = 2 \times 10^{-13 - 17} = 2 \times 10^{-30}$

Factor Completely:

(1)
$$3x^2 - 75$$
 $= 3(x^2 - 25)$
 $= \frac{3(x+5)(x-5)}{2}$
 $= \frac{2x(x^2 - 49)}{2}$
 $= \frac{2x(x+7)(x-7)}{2}$

(3) $x^2 + 4x + 3$
 $= \frac{(x+1)(x+3)}{3x}$
 $= \frac{1x}{3x}$
 $= \frac{1x^2 - 2x + 21x - 6}{2}$
 $= \frac{1x^2 - 2x + 21x - 6}{2}$

(a)
$$x^{3} + 2x^{2} - 15x$$

$$= \chi(\chi^{2} + 2x - 15)$$

$$= \chi(\chi + 5)(\chi - 3)$$

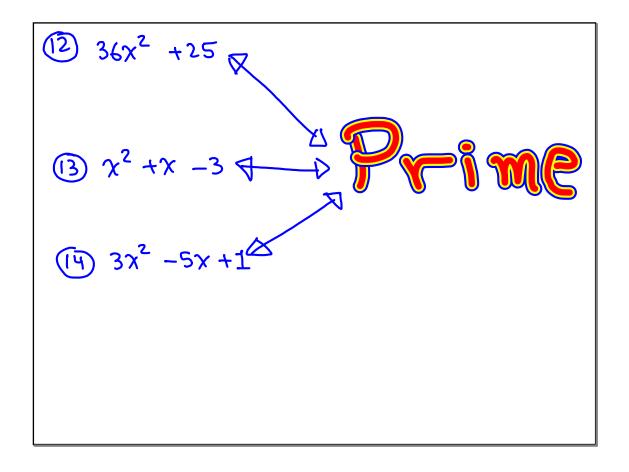
$$= \chi(\chi + 5)(\chi - 3)$$

$$= \chi(\chi^{3} - 8)$$

$$= \chi^{3} - 2^{3}$$

$$= \chi(\chi^{3} - 8)$$

$$= \chi^{3} - 2^{3}$$


$$= \chi(\chi^{3} - 8)$$

$$= \chi^{3} - 2^{3}$$

$$= \chi^{2}(8y^{3} + 125y^{2})$$

$$= \chi^{2}$$

(a)
$$x^{3} + 7x^{2} - 4x - 28$$

 $= x^{2}(x+7) - 4(x+7)$
 $= (x+7)(x^{2}-4) = (x+7)(x+2)(x-2)$
(b) $25x^{2} - 80xy + 64y^{2}$
 $= (5x - 8y)^{2} = (5x - 8y)^{2}$
 $= (5x)(8y) = 80xy$
(11) $x^{2} + 13x + 36 = (x+9)(x+4)$
 $= (x+7)(x+4)$

Zero - Product Rule:
If
$$A \cdot B = 0$$
, then $A = 0$ or $B = 0$
(Maybe both)
Ex: Solve

$$(\chi - 5)(\chi + 3) = 0$$

$$\chi - 5 = 0 \quad \text{or} \quad \chi + 3 = 0$$

$$\chi - 5 = 0 \quad \text{or} \quad \chi + 3 = 0$$

$$\chi - 5 = 0 \quad \text{or} \quad \chi + 3 = 0$$

Solve
$$(2\chi - 7)(3\chi + 10) = 0$$

By Zero - Product Rule $2\chi - 7 = 0$ or $3\chi + 10 = 0$
 $2\chi = 7$ or $\chi = -10$ $\chi = \frac{7}{3}$ $\chi = -10$
Solve $-4\chi(\chi - 10)(10\chi + 1) = 0$
By Z.P.R. $-4\chi = 0$ or $\chi - 10 = 0$ or $\chi = -10$ $\chi = 0$ $\chi = 0$

Solving Polynomial Equations:

(2) Factor the other Side
$$\chi^2 - 36 - 5\chi = 0$$

Completely $\chi^2 - 5\chi - 36 = 0$

3) use Zero-Product Rule,
$$(x-9)(x+9)$$
 and solve each factor By Z.P.R.
4) Solves in a Solu Set $x-9=0$ or

2) Factor the other side
$$\chi^2-36-5\chi=0$$

Completely $\chi^2-5\chi-36=0$
3) Use Zero-Product Rule, $(\chi-9)(\chi+4)=0$
and solve each factor By Z.P.R.
Gy Solve in a Solve Set $\chi-9=0$ or $\chi+4=0$

$$\left\{\frac{\chi=9}{4,9}\right\}$$

Solve
$$4\chi^2 - 11\chi = 3$$

 $P = -12$
 $S = -11$
 $1 \stackrel{?}{\xi} - 12$
 -12
 $\chi(4\chi + 1) - 3(4\chi + 1) = 0$
 $\chi(4\chi + 1)(\chi - 3) = 0$
 $\chi(4\chi + 1)(\chi(4\chi + 1) = 0)$
 $\chi(4\chi + 1)(\chi(4\chi + 1) = 0)$

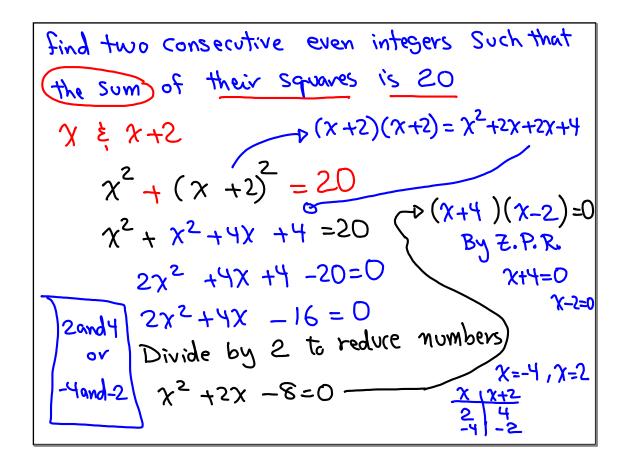
The product of two consecutive integers is

30. find all such integers.

$$\chi(x+1) = 30$$

$$\chi^2 + \chi = 30$$

$$\chi = -6$$


$$\chi = 5$$

$$\chi = -6$$

$$\chi = 5$$

$$\chi = -6$$

$$\chi = 5$$
Soud 6 or -6 and -5

Solve
$$32x^3 - 4x^2 - 6x = 0$$
 Hint:
Divide by 2 Factor out GCF
 $16x^3 - 2x^2 - 3x = 0$
 $\chi(16x^2 - 2x) - 3 = 0$
 $\gamma(16x^2 - 2x) - 3 = 0$
 $\gamma(16x^2 + 6x) - 8x - 3 = 0$
 $\gamma(2x(8x + 3) - 1(8x + 3)) = 0$
 $\gamma(8x + 3)(2x - 1) = 0$

By Zew-Product Rule
$$\chi = 0 \qquad 8x + 3 = 0 \qquad 2x - 1 = 0$$

$$\chi = 0 \qquad \chi = \frac{-3}{8} \qquad \chi = \frac{1}{2}$$

$$\frac{-3}{8}, 0, \frac{1}{2}$$

Solve
$$6x^2 = 30 - 57x$$

 $6x^2 - 30 + 57x = 0$
 $6x^2 + 57x - 30 = 0$
Divide by 3 to reduce numbers.
 $2x^2 + 19x - 10 = 0$
 $2x^2 + 20x - 1x - 10 = 0$
 $2x + 10 = 0$ or $2x + 10 = 0$
 $2x + 10 = 0$ or $2x + 10 = 0$
 $2x + 10 = 0$ or $2x + 10 = 0$
 $2x + 10 = 0$ or $2x + 10 = 0$
 $2x + 10 = 0$ or $2x + 10 = 0$
 $2x + 10 = 0$ by $2x + 10 = 0$
 $2x + 10 = 0$ by $2x + 10 = 0$

Factor Completely

$$3 x^{2} - x - 12$$

$$= (x - 1)(x + 3)$$

$$= (x - 1)(x + 3)$$

$$= (x - 1)(x + 3)$$

②
$$3x^3 - 4x^2 + 6x - 8$$

= $x^2(3x - 4) + 2(3x - 4)$
= $(3x - 4)(x^2 + 2)$
④ $2x^2 + 5x - 12$
 $P = -24$
 $S = 5$
= $2x^2 + 8x - 3x - 12$
= $2x(x + 4) - 3(x + 4)$
= $(x + 4)(2x - 3)$